
Application Layer Packet Classifier
Pratibha Tambewagh#1, Asmita Jagtap#2

#1, Lecturer, BVIT, Kharghar, Navi Mumbai.
#2, Lecturer, BVIT, Kharghar,Navi Mumbai.

Abstract-The use of Application layer packet classifier and
optimization of bandwidth towards QoS in Linux using
netfilter, iproute2 and layer-7 Filter.As seen in the statistics
the huge amount of data flows through the network, so it is
necessity to apply packet-filtering rules in order to control the
traffic and add firewall rules. Some services are inherently
insecure and impossible to secure on individual hosts. Packet
filtering tools can help you segment and contain parts of your
network to increase security. A packet filtering tools can help
you enforce your network security policies by selectively
allowing network services. Because a packet filtering tools
must examine all inbound/outbound network traffic, it can
help you log network activity. We are looking at packet
filtering tools like Netfilters and iproute2, who examine the IP
packets for filtering and using the queuing disciplines for
traffic control.
Keywords- Application layer packet, HTTP, FTP

1. INTRODUCTION
The most important things needed to build packet filtering
rules using firewalls and Quality of Service (QoS) with
Linux are two packages named netfilter and iproute2.
While netfilter is a packet filtering framework included in
the Linux kernels 2.5 and 2.6 which uses iptables as a
frontend, netfilter is a set of hooks inside the Linux kernel
that allows kernel modules to register callback functions
with the network stack. A registered callback function is
then called back for every packet that traverses the
respective hook within the network stack. Iptables is a
generic table structure for the definition of rulesets. Each
rule within an IP table consists of a number of classifiers
(iptables matches) and one connected action (iptables
target).Iproute is a package containing a few utilities like
bandwidth provisioning called Traffic Control (tc) and ip
that allow Linux users to do various method for classifying,
prioritizing, sharing, and limiting both inbound and
outbound traffic.

2. METHODOLOGY
2.1 Netfilter/Iptables

Netfilter is a very important part of the Linux kernel in
terms of security, packet mangling, and manipulation. The
front end for netfilter is iptables, which "tells" the kernel
what the user wants to do with the IP packets arriving into,
passing through, or leaving the Linux box, it's an main
router to route all the packet. The most used features of
netfilter are packet filtering and network address
translation, but there are a lot of other things that we can do
with netfilter, such as packet mangling. In addition we can
do a application layer packet classification, putting some
additional kernel hooks.

Advantages of Netfilter/Iptables
•State matching - Connection tracking.
•Automatic fragmentation reassembly - Connection

tracking automatically reassembles fragmented packets
for examination.

•Improved matching - Advanced packet matching such as
rate limit, string

matching (packet data).
•Improved logging - Customized logging levels and entries,

also allows user space logging.
•Allows packet mangling - Allows for the mangling of any

information inside a packet.
•Userspace queuing - Allows userspace programs access to

packets.
•Built-in support for port forwarding.
An rough explanation on how netfilter works is like this:
The user instructs the kernel about what it needs to do with
the IP packets that flow through the Linux box using the
iptables tool. The Linux box then analyzes the IP headers
on all packets flowing through it. If, when looking at the IP
headers, the kernel finds matching rules, then the packet is
manipulated according to the matching rule.

• If a rule does not match, try to match next rule.
• If a rule matches, take appropriate action.

2.2 Netfilter tables
1.Packet Filtering (Filter Table)
2.Network Address Translation (Nat Table)
3.Packet Mangling (Mangle Table)

Pratibha Tambewagh et al | IJCSET(www.ijcset.net) | 2019 | Volume 9, 21-24

21

Each containing a default set of rules, which are called
chains. The default table loaded into the kernel is the filter
table. The filter table contains contains following chains:
➢ INPUT Chain
➢ FORWARD Chain
➢ OUTPUT Chain

Fig.Filter Table

 INPUT: used for traffic which is for our local machine
 OUTPUT: used for traffic which originated on the local
system, otherwise known as the firewall.
FORWARD: used for traffic which is being routed between
two network interfaces on our firewall.
Immediately after a packet arrives at our Linux box, the
mangle table PREROUTING chain is analyzed.At this
point we can do all sorts of modifications on the IP packets
supported by the mangle table (TOS byte modifications,
TTL and Marking packets, and so on) before the routing
process takes place.

Fig.Mangle Table

PREROUTING Chain: The PREROUTING chain can be
used to set netfilter, routing and SEC marks, both on a per
packet basis and on a per connection basis.
 INPUT Chain: The INPUT chain is could be used for mark
handling.
 FORWARD Chain: The FORWARD chain of the mangle
table can be used for mark handling and for mangling
packet headers of packets that are traveling across the
firewall. Changing TTL and TOS.
OUTPUT Chain: The OUTPUT chain could be used to
mangle the packets leaving the firewall or host itself, for
example setting different marks or setting TTL or TOS
values.
POSTROUTING Chain: This chain is basically used to
setting values for all packets leaving both the host or

firewall itself, and traffic traversing the machine. For
example, it could be used to reset the MTU of packets, set
TTL or TOS et cetera. Next, the packets flow through the
pre-routing chain of the NAT table.
NAT tables allows a host or several hosts to share the same
IP address in a way. NAT tables translates the source and
destination addresses of packets as we already said to
different addresses. The NAT receives the packet, rewrites
the source and/or destination address and then recalculates
the checksum of the packet. One of the most common
usages of NAT is the SNAT (Source Network Address
Translation) function. It also do the DNAT (Destination
Network Address Translation) , DNAT is the process of
translating one (usually public) IP address into another
(usually private).

Fig.NAT Table

2.3 Iptables Operations
The operations iptables can do with chains are:
• List the rules in a chain (iptables –L CHAIN).
• Change the policy of a chain (iptables –P CHAIN
ACCEPT).
• reate a new chain (iptables –N CHAIN).
• Flush a chain; delete all rules (iptables –F
CHAIN).
• Delete a chain (iptables –D CHAIN), only if the
chain is empty.
• Zero counters in a chain (iptables –Z CHAIN).
Every rule in every chain keeps a counter of the number of
packets and bytes it matched. This command resets those
counters.
 Operations that iptables can execute on rules
•Append rules to a chain (iptables –A)
•Insert rules in a chain (iptables –I)
•Replace a rule from a chain (iptables –R)
•Delete a rule from a chain (iptables –D)
The most used switches are –A and –D (append and delete
rules). Usually, when designing firewalls, the rules are
appended to chains. During run time, users use –I more
than –A because often they need to insert temporary rules
in the chain.
 iptables –A places the rule at the end of the chain, while
iptables –I places the rule on the top of the other rules in
the chain. However, you can insert a rule anywhere in the
chain by specifying the position where you want the rule to
be in the chain with the –I switch: iptables –I CHAIN 5 will
insert a rule at the fourth position of the specified chain.

Pratibha Tambewagh et al | IJCSET(www.ijcset.net) | 2019 | Volume 9, 21-24

22

 iptables –D can be used by specifying the position of the
rule you want to delete
The syntax for adding a rule to a chain is:
 iptables –A <CHAIN_NAME> …<filtering
specifications>… -j <TARGET>
Filtering specifications is a part of an iptables rule that is
used by the kernel to identify IP packets for which the
kernel does the action specified by TARGET.
4.5 Filtering Specifications
IP packets can be identified in a large number of ways by
specifying interfaces, protocols, ports, etc., to iptables
rules.
• Filtering specifications for Layer2: Interfaces can be

specified as selectors with –i and –o switches. -i
stands for "--in-interface", and -o for "--out-interface".

• Filtering specifications for Layer 5: Source IP
address(es) can be specified using -s, --src, or --source,
and destination IP address(es) with -d,--dst, or
--destination. Sources or destinations can be IP
addresses, subnets, or canonical names.

• Filtering specifications for Layer 5: Protocol can be
specified using the -p switch, which stands for
"--protocol". Protocols can be specified by their
corresponding numbers or by their names—tcp, udp, or
icmp (case insensitive).

• For the ICMP protocol, you can specify ICMP
message types using "--icmp-type".

• For the UDP protocol, you can specify source or
destination ports with "--source-port" or "--sport" and
"--destination-port" and "--dport".

TCP, being the most complete Layer 5 protocol, has more
options. You can specify, besides source or destination
ports as for the UDP protocol, "--tcp-flags", "--syn" and
“--tcp-option". TCP flags can be: SYN, ACK, FIN,
RST, URG, PSH, ALL, NONE ."--syn" is used to identify
the initiating connections and is equivalent to "--tcp-flags
SYN, RST, ACK SYN". "--tcp-option" followed by a
number matches TCP packets with the option set to that
number. Filtering specifications can combine all of the
features just mentioned; so we can have a combination of
Layers 2, 5, and 5 specifications in the same rule. A new
and "daring" extension to iptables is to extend its
capabilities from the lower layers to the upper layer of the
OSI model, Layer 7-application. is called layer7-filter and
it will do the application layer packet filtering.

2.4 Target Specifications
Following are the targets:
ACCEPT, DENY, DROP, REJECT, SNAT, DNAT,
MASQUERADE, LOG
For the filter table, the most used targets for firewall rules
are DROP and ACCEPT. If a rule matches the filtering
specifications and has a DROP target, the packet will
simply be discarded. If a packet matches a rule with a
DROP target, the Linux kernel will drop the packet without
consulting other rules in the firewall. If the target is
ACCEPT, then the packet is accepted without further
consultation of other firewall rules. An alternative to DROP

is the REJECT target, which drops the packet but sends an
ICMP packet to the source IP of the packet.
By default, the REJECT target will send an ICMP 'port
unreachable' message to the sender, but that can be
overwritten using the "--reject-with" switch. Another useful
target is LOG, which can be used to log packets matching a
filtering specification in the kernel log, which can be read
with dmesg or syslogd.LOG target options are:
--log-level: The level of logging can be a name or a
number. The valid names are debug, info, notice, warning,
err, crit, alert, and emerg with corresponding numbers from
7 to 0.
--log-prefix prefix: Log prefix is followed by a string of up
to 29 characters, placed at the beginning of the log message
--log-tcp-sequence: Logs TCP sequence numbers.
--log-tcp-options: Logs the option field of TCP packet
headers.
--log-ip-options: Logs the option field of the IP packet
headers.
--log-uid: Logs the user ID of the process that generated
the packet.
The LOG target is not a terminating target like ACCEPT,
DROP, and REJECT. This means that if a packet matches a
rule that has the LOG target, the kernel looks up the rules
that follow to also match this packet. A limit match for
rules with LOG targets would be a good idea to prevent
flooding the log files.

iproute2
iproute2 is a software package that provides various tools
for advanced routing, tunnels, and traffic control. iproute2
is well known for implementing QoS in Linux kernels. The
most important tools that iproute2 provides are ip and tc.

ip Tool
The ip tool provides most of the networking configuration a
Linux box needs. You can configure interfaces, ARP,
policy routing, tunnels, etc. Now, with IPv5 and Ipv6.

To see what ip knows:
 [root@igarbo ~]# ip help
 Usage: ip [OPTIONS] OBJECT { COMMAND | help }
where OBJECT := { link | addr | route | rule | neigh | tunnel
| maddr | mroute | monitor | xfrm } OPTIONS := {
-V[ersion] | -s[tatistics] | -r[esolve] | -f[amily] { inet | inet6 |
ipx | dnet | link }| -o[neline] }
The ip link command shows the network device's
configurations that can be changed with ip link set. This
command is used to modify the network device's
proprieties and not the IP(IPV5/6) address.The IP addresses
can be configured using the ip addr command. This
command can be used to add a primary or secondary (alias)
IP address to a network device (ip addr add), to display the
IP addresses for each network device (ip addr show), or to
delete IP addresses from interfaces (ip addr del).IP
addresses can also be flushed using different criteria, e.g. ip
addr flush dynamic will flush all routes added to the kernel
by a dynamic routing protocol. Neighbor/Arp table
management is done using ip neighbor, which has a few

Pratibha Tambewagh et al | IJCSET(www.ijcset.net) | 2019 | Volume 9, 21-24

23

commands expressively named add, change, replace,
delete, and flush.
One very important and probably the most used object of
the ip tool is ip route, which can do any operations on the
kernel routing table. It has commands to add, change,
replace, delete, show,flush, and get routes.

Traffic Control (tc) tool
The tc command allows us to build different QoS policies
in their networks using Linux instead of very expensive
dedicated QoS hardware boxes.
The tc tool performs all of the configuration of the kernel
structures required to support traffic control. The utility
takes as its first non-option argument one of three Linux
traffic control components, qdisc, clsss or filter.
In order to match Layer 7 data, netfilter looks deeper into
an IP packet than just at its header. However, the actual
data contained in the packet doesn't just say "I'm a P2P
packet; filter me!"; so
the data is matched against a set of regular expressions that
are common to different applications. This set of regular
expressions is probably the most important part of this
project, and is called "protocol definitions".
The L7-filter project contains three important parts:
1.A kernel patch, which provides a way for the kernel to
look into the IP packets
2.An iptables patch, which provides the match option for
iptables.
Netfilter/iptables:
netfilter is a very important part of the Linux kernel in
terms of security, packet mangling, and manipulation. The
front end for netfilter is iptables, which "tells" the kernel
what the user wants to do with the IP packets arriving into,
passing through, or leaving the Linux box.
The most used features of netfilter are packet filtering and
network address translation, but there are a lot of other
things that we can do with netfilter, such as packet
mangling Layer 7 filtering.
A rough explanation on how netfilter works is like this:
1.The user instructs the kernel about what it needs to do
with the IP packets that flow through the Linux box using
the iptables tool.

2.The Linux box then analyzes the IP headers on all
packets flowing through it.
3.If, when looking at the IP headers, the kernel finds
matching rules, then the packet is manipulated according to
the matching rule.

3.CONCLUSION
It might look very simple at the beginning, but actually is a
lot more complicated process. netfilter has a few tables,
each containing a default set of rules, which are called
chains. The default table loaded into the kernel is the filter
table, which contains three chains, that contains rules for
packets destined to the Linux machine itself, for packets
that the Linux machine routes to another IP address, rules
for packets generated by the Linux machine. The advantage
is the low cost and works on nonstandard protocol.

REFERENCES
1. Lucian Gheorghe “Designing and Implementing Linux Firewalls

and QoS using netfilter, iproute2, NAT, and LFilter” Packt
Publishing, October 2006

2. Application Layer Packet Classifier for Linux website
“http://l7filter.sourceforge.net/”

3. Netfilter, firewalling, nat and packet mangling for linux website
http://www.netfilter.org

4. Nigel Kukard “Bandwidth Management and Optimization”
International Network INASP,Opensource Bandwidth Solutions
March 2006

5. Lukas Kencl, Christian Schwarzer, “TrafficAdaptive Packet Filtering
of Denial of ServiceAttacks” Intel Research laboratories, World of
Wireless, Mobile and Multimedia Networks,2006. WoWMoM 2006.

6. J. McCann and Satish Chandra, “Packet Types:Abstract
Specification of Network ProtocolMessages” Bell Laboratories,
ACM SIGCOMM Computer Communication ReviewVolume 30 ,
Issue 4 October 2000

7. Jeffrey C. Mogul, “ The Packet Filter An Efficient Mechanism for
UserlevelNetworkCode”Digital Equipment Corporation Western
Research Laboratory, ACM Operating SystemsReview, SIGOPS

8. HolgerDreger, AnjaFeldmann, Michael Mai, Vern Paxson, Robin
Sommer “DynamicApplicationLayerProtocol Analysis for Network
Intrusion Detection” USENIX Security

9. Pankaj Gupta ,Nick McKeown “Packet Classification on Multiple
Fields”, Proc. Sigcomm,Computer Communication Review, vol. 29,
no. 4, pp 14760,September 1999, HarvardUniversity.

10. Florin Baboescu George Varghese “Scalable Packet Classification ”
, University of California,San Diego Proceedings of ACM Sigcomm,
pages 199210,August, 2001.

Pratibha Tambewagh et al | IJCSET(www.ijcset.net) | 2019 | Volume 9, 21-24

24

http://www.netfilter.org/

	Application Layer Packet Classifier

